જો બુલિયન સમીકરણ $\left( {p \oplus q} \right) \wedge \left( { \sim p\,\Theta\, q} \right)$ એ $p \wedge q$ ને સમાન હોય જ્યાં $ \oplus $ , $\Theta \in \left\{ { \wedge , \vee } \right\}$ ,તો $\left( { \oplus ,\Theta } \right)$ =
$\left( { \vee , \wedge } \right)$
$\left( { \vee , \vee } \right)$
$\left( { \wedge , \vee } \right)$
$\left( { \wedge , \wedge } \right)$
વિધાન $\left( { \sim \left( {p \vee q} \right)} \right) \vee \left( { \sim p \wedge q} \right)$ તાર્કિક રીતે .......... ને સમાન છે
$( p \Delta q ) \Rightarrow(( p \Delta \sim q ) \vee((\sim p ) \Delta q ))$ નિત્યસત્ય થાય તે માટે $\Delta \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}$ ની પસંદગી કેટલી રીતે થઈ શકે?
વિધાન $p \rightarrow (q \rightarrow p)$ કોના સાથે સમતુલ્ય છે ?
જો $P \Rightarrow \left( {q \vee r} \right)$ એ મિથ્યા હોય તો $p, q, r$ નું સત્યાર્થતાનું મુલ્ય અનુક્રમે ............ થાય
ધારોકે $\Delta, \nabla \in\{\Lambda, v\}$ એવા છે કે જેથી $( p \rightarrow q ) \Delta( p \nabla q )$ એ નિત્યસત્ય છે. તો